
Classification of Driving Behaviors Using
STL Formulas: A Comparative Study

Ruya Karagulle1(B), Nikos Aréchiga2, Jonathan DeCastro2,
and Necmiye Ozay1

1 University of Michigan, Ann Arbor, MI 48109, USA
{ruyakrgl,necmiye}@umich.edu

2 Toyota Research Institute, Cambridge, MA, USA
{nikos.arechiga,jonathan.decastro}@tri.global

Abstract. In this paper, we conduct a preliminary comparative study
of classification of longitudinal driving behavior using Signal Temporal
Logic (STL) formulas. The goal of the classification problem is to dis-
tinguish between different driving styles or vehicles. The results can be
used to design and test autonomous vehicle policies. We work on a real-
life dataset, the Highway Drone Dataset (HighD). To solve this problem,
our first approach starts with a formula template and reduces the clas-
sification problem to a Mixed-Integer Linear Program (MILP). Solving
MILPs becomes computationally challenging with increasing number of
variables and constraints. We propose two improvements to split the clas-
sification problem into smaller ones. We prove that these simpler prob-
lems are related to the original classification problem in a way that their
feasibility imply that of the original. Finally, we compare our MILP for-
mulation with an existing STL-based classification tool, LoTuS, in terms
of accuracy and execution time.

Keywords: driving behavior · STL classification · formal methods

1 Introduction

A key factor in developing high-quality and robust policies for autonomous driv-
ing is strong understanding of the driving environment. An essential component
to understanding this environment is high-quality prediction models of driving
behaviors. In this paper, we compare methods to classify driving behaviors as
exhibited in real-world data. We use the HighD dataset to work on naturalistic
vehicle trajectories [13]. The dataset comprises 110500 vehicle tracks recorded
on German highways. As our case study, we consider the task of distinguishing
the longitudinal driving behavior of cars and trucks in this dataset.

Existing work in time series classification provides a variety of methods that
can be used to classify behaviors. However, time-series classifiers such as Long
Short-term Memory (LSTM) [11] or classification using Dynamic Time Warping
[4] frequently lack interpretability. In the early stages of system development,
c© Springer Nature Switzerland AG 2022
S. Bogomolov and D. Parker (Eds.): FORMATS 2022, LNCS 13465, pp. 153–162, 2022.
https://doi.org/10.1007/978-3-031-15839-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15839-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-15839-1_9

154 R. Karagulle et al.

human engineers are heavily involved in interacting with prediction models, as
well as debugging erroneous conditions that may arise in either simulation or
real-world testing. Engineers would greatly benefit from interpretable classifica-
tion and prediction models, which would help them to better understand the
root cause of failures as well as possible solutions. Temporal Logic (TL) [17] is
extensively used to describe the behavior of cyber-physical systems [1,6–8]. The
symbolic nature of temporal logic specifications make them a good candidate for
interpretable classifiers. Moreover, they can be used for runtime decision-making.

Signal Temporal Logic (STL) [14] is a variant of temporal logic that can
be used to reason about continuous, discrete, or even hybrid signals. In addi-
tion, several different quantitative semantics have been proposed for STL. The
quantitative semantics can be used to compute the robustness metric, which is
a measure of the degree of satisfaction of signals for a given STL formula and a
signal trace. Robustness is a sound and non-smooth function [19].

TL formula inference problem tries to learn a TL formula from the data and it
has been studied before in the literature [5,9,12,15]. [5,9,12] use another variant
of STL called Parametric STL (PSTL) where numerical values of the formula
are interpreted as unknown parameters. In [3], the authors approach the two-
class classification problem as a statistical learning problem. Given the template
formula, they explore the parameters using statistical model checking. The paper
[12] defines a directed acyclic graph (DAG) of formula templates and searches
over this graph, after proving the partial ordering of formulas. Their loss function
is the number of misclassifications and the length of the formula (the number
of linear predicates that appear in the formula). In [5], they propose a decision
tree approach for both online and offline learning using STL formula. They
incrementally update the binary tree linked to the STL formula decision and
search for the smallest formula that can be constructed from a set of primitives.
In this paper, we use their toolbox LoTuS for comparison. [15] solves a series
of satisfiability problems in Boolean logic to obtain the smallest linear temporal
logic formula possible.

Learning from formula templates can be used for car-truck classification as
well. It is known that trucks tend to go slower than cars since they are heavier
and tend to maintain a longer distance from lead vehicles since their deceleration
rates are slower than cars. By considering this knowledge and taking inspiration
from Adaptive Cruise Control (ACC) driving specifications [16], we develop an
STL formula template. We recast the classification problem to an appropriate
MILP problem in parameters of the STL formula template, and we optimize
the robustness of the STL formula to find the optimal parameters. Since MILP
problems can blow up in execution time with the number of variables and con-
straints, we propose two separation methods to improve execution time. The
first separation is over the formula template and the second one is over the
data. Although optimality is not preserved, we prove that the parameters found
after improvements are also in the feasible domain for the original problem. We
compare the MILP formulation with [5] and provide quantitative results for test
error and for execution times. Limitations of both approaches are discussed.

Classification of Driving Behaviors Using STL Formulas 155

2 Preliminaries

STL is defined with the syntax φ := � | π | ¬φ | φ1 ∧ φ2 | φ1UIφ2. The boolean
true is �, and π is a predicate of the form f(s(t)) ≤ μ where f : Rn → R, π = �
when inequality holds. The logical not is ¬, and ∧ is the conjunction operator.
The temporal operator “Until” with the bounded interval I is shown as UI .
Always �I , eventually ♦I , disjunction ∨, are defined as φ1 ∨φ2 = ¬(¬φ1 ∧¬φ2),
♦Iφ = �UIφ, and �Iφ = ¬♦I¬φ.

If a signal s satisfies a formula φ, it is shown as s |= φ, and if it violates, it
is shown as s �|= φ. Satisfaction rules are given by the qualitative semantics:

s(t) |= π ⇐⇒ π
s(t) |= ¬φ ⇐⇒ ¬(s(t) |= φ)
s(t) |= φ1 ∧ φ2 ⇐⇒ ((s(t) |= φ1) ∧ (s(t) |= φ2))
s(t) |= φ1U[a,b]φ2 ⇐⇒ ∃t′ ∈ [t + a, t + b] s.t. (s(t′) |= φ2) ∧ (∀t′′ ∈ [t, t′](s(t′′) |= φ1))

.

In addition to their boolean semantics, STL formulas have a quantitative
semantics, which quantify the degree to which a formula is satisfied or falsi-
fied. The quantitative semantics are defined with a metric called robustness.
Given the signal and the formula, if the robustness metric is positive, then
the signal satisfies the formula and vice versa. The robustness of the logical
truth is ρ(s,�, t) = +∞ and the robustness of the predicate φ = f(s) ≤ μ is
ρ(s, φ, t) = μ − f(s(t)). The robustness of a formula is defined recursively as
follows:

ρ(s,¬φ, t) = −ρ(s, φ, t)
ρ(s, φ1 ∧ φ2, t) = min(ρ(s, φ1, t), ρ(s, φ2, t))
ρ(s, φ1U[a,b]φ2, t) = maxt′∈[t+a,t+b](min(ρ(s, φ2, t

′),mint′′∈[t,t′] ρ(s, φ1, t
′′)))

Robustness of derived operators can be found by re-writing the operator
in terms of the primitive operators. In STL formulas, the predicate values μ
and time intervals I are known. In [2], authors define another variant of STL,
called Parametric Signal Temporal Logic (PSTL), where those values can be
defined as parameters. A PSTL formula φµ will become an STL formula φ with
a corresponding valuation of parameters µ, where µ is the set of both scale and
time parameters. With slight abuse of notation, we use ϕμ for corresponding
valuation vector μ of parameters µ. We define an STL formula template as a
PSTL formula with a set of unknown parameters.

3 Specifying Longitudinal Driving Behavior with STL

For the longitudinal driving scenario considered in this paper, the sample signal is
two-dimensional, speed in [km/h] and time headway in [s], that is si =

[
vi wi

]�,
where vi ∈ R

Ti and wi ∈ R
Ti are the time series of speed and time headway

values, respectively, with signal duration Ti. We want to find the formula that

156 R. Karagulle et al.

separates trucks from cars. From the intuition that trucks keep different speed
and time headway than cars, we propose the following STL formula template:

ϕ = �{�[0,τ1](w ≥ wε) =⇒ ♦[0,τ2](�(v ≤ (1 + ε)vdes) ∧ �(v ≥ (1 − ε)vdes) ∨ w < wε)
∧�[0,τ1](w < wε) =⇒ ♦[0,τ2](�(w ≤ (1 + ε)wdes) ∧ �(w ≥ (1 − ε)wdes) ∨ w ≥ wε)},

(1)
where wε is the time headway threshold, τ1 is the cause time interval, τ2 is
the effect time interval, ε is the acceptance threshold for desired values, and
vdes and wdes are desired speed and desired time headway, respectively. This
formula comprises of two subformulas. The first subformula ϕ1 = �[0,τ1](w ≥
wε) =⇒ ♦[0,τ2](�(v ≤ (1 + ε)vdes ∧ v ≥ (1 − ε)vdes) ∨ w > wε) semantically
represents that if there is no lead vehicle in close distance (time headway more
than wε) for τ1 seconds, the ego vehicle eventually reaches it desired speed vdes

or lead vehicle happens to be in ego vehicle’s close distance. This is similar to
ACC set speed mode. The second subformula represents ACC time gap mode.
ϕ2 = �[0,τ1](w < wε) =⇒ ♦[0,τ2](�(w ≤ (1+ε)wdes∧w ≥ (1−ε)wdes)∨w ≥ wε)
means if there is a lead vehicle in front of the ego vehicle in time interval [0, τ1],
ego vehicle eventually reaches its desired time headway wdes in time interval
[0, τ2] or the time headway increases. Here in this formula, it is assumed that
wε, ε, τ1 and τ2 are known values. µ = µ1 ∪ µ2 = {vdes, wdes} are unknown
parameters. Note that the formula can be seen as ϕµ = �(ϕ1,µ1 ∧ ϕ2,µ2).

4 Methods

Let S = {(si, yi)}N
i=1 be the signal set. Let si be the ith sample signal, and

yi ∈ {0, 1} be its label. We assume there are two classes of signals that we wish
to classify: Class 0 signals are denoted as S0 := {si ∈ S : yi = 0}, and class 1
signals are denoted as S1 := {si ∈ S : yi = 1}. The problem this paper addresses
is to find an STL formula satisfied by class 0 signals and violated by class 1.

We can attempt to solve this problem by proposing a PSTL template and then
solving an optimization problem over the formula parameters to maximize the
robustness of the formula over class 0 while minimizing the robustness over class
1. This method can be useful when domain-specific knowledge allows proposing
a suitable PSTL template, but specific parameters are unknown. Assuming that
signal classes are separable with the formula above, the problem:

max
r,μ

r

s.t. ρ(si, ϕμ, 0) ≥ r ∀si ∈ S0

ρ(si, ϕμ, 0) ≤ −r ∀si ∈ S1

r ≥ 0

(2)

returns the optimal parameter set. In particular, Problem (2) tries to find the
parameter set that maximizes the margin r between two classes.

The classes might not be separable in reality, at least for two reasons. First,
in real-life scenarios, it is likely to have outliers. Second, the formula template
is heuristically selected. It is not guaranteed that experts are competent enough

Classification of Driving Behaviors Using STL Formulas 157

to separate the dataset with respect to the template or this separation may not
be that obvious to human observation. Hence, we also consider a soft margin
version of Problem (2):

max
r,μ

r − θ(
∑

i ζ+i +
∑

i ζ−
i)

s.t. ρ(si, ϕμ, 0) + ζ+i ≥ r ∀si ∈ S0

ρ(si, ϕμ, 0) − ζ−
i ≤ −r ∀si ∈ S1

r, ζ+i , ζ−
i ≥ 0,

(3)

where ζ+i and ζ−
i are slack variables, θ is a weight that penalizes the violation

of margins. In this formulation, class 0 signals can have negative robustness and
class 1 signals can have positive robustness.

Both problems (2) and (3) can be converted to MILP using standard encod-
ings of robustness metrics [18]. The performance of a MILP depends on the
number of variables and the number of constraints. Here, each signal adds new
sets of variables and constraints. In addition, the number of constraints increases
with increasing formula complexity, i.e., the number of operators in the formula.
With large datasets and complex formulas such as HighD and the formula above,
Problems (2) and (3) may not be solved in reasonable time. To address this
issue, we propose two improvements and one formula template relaxation. First
improvement uses the structure of the formula (1).

Proposition 1 (Formula Separation). Given any PSTL formula of the form
ϕµ = �(ϕ1,µ1

∧ϕ2,µ2
), with µ1, µ2 disjoint, consider the following optimization

problems:

max
r1,μ1

r1

s.t. ρ(si, ϕ1,μ1 , 0) ≥ r1 ∀si ∈ S0

ρ(si, ϕ1,μ1 , 0) ≤ −r1 ∀si ∈ S1

r1 ≥ 0,

(4)

max
r2,μ2

r2

s.t. ρ(si, ϕ2,μ2 , 0) ≥ r2 ∀si ∈ S0

ρ(si, ϕ2,μ2 , 0) ≤ −r2 ∀si ∈ S1

r2 ≥ 0
(5)

If Problems (4) and (5) are feasible, then Problem (2) is feasible. Specifically,
if μ∗

1, μ∗
2, r∗

1, r∗
2 are the optimizers of Problem (4) and (5), then μ̃ =

[
μ∗
1 μ∗

2

]

and r̃ = min(r∗
1 , r

∗
2) is a feasible solution for Problem (2).

Proof of Proposition 1 can be found in [10]. Since the formula (1) satisfies
the conditions in Proposition 1, we are able to halve the number of variables and
number of constraints for each subproblem.

Next, we propose a relaxation of the formula template (1), inspired by [16].
Assuming that trucks move slower than cars, instead of using ϕ1,µ1 , we can
remove the upper bound and range acceptance threshold ε. The new formula
becomes ϕ̃1,µ1 = �[0,τ1](w ≥ wε) =⇒ ♦[0,τ2](�(v ≤ μ1) ∨ w < wε). Note
that this formula is to be satisfied by trucks. Therefore, trucks are set to class
0. Formula ϕ̃1,µ1 tries to find limit speed that distinguishes two classes. Same
approach can be applied for time headway. Since trucks are keeping longer time

158 R. Karagulle et al.

headways, we can remove the lower bound. Second subformula will be ϕ2,µ2 =
�[0,τ1](�w < wε) =⇒ ♦[0,τ2](�(w ≥ μ2) ∨ w ≥ wε). Finally, we obtain

ϕ̃µ = �(ϕ̃1,µ1 ∧ ϕ̃2,µ2). (6)

Note that we can apply Proposition 1 to template (6). With the help of formula
(6), we are able to discard two sets of constraints per each input. However,
number of variables and constraints still depends on number of inputs and large
input sets are still not solvable in reasonable time even with these improvements.
Instead of solving the large input set as a whole, we can divide it into smaller
chunks and handle them separately.

Proposition 2 (Data Separation). Take one of the formulas ϕ̃i,µi
, i ∈ {1, 2}

from (6). Consider a dataset S = S0 ∪ S1, where S0 denotes trucks and S1

denotes cars. Partition S0 and S1 to form B batches {Si = (Si
0,Si

1)}B
i=1. If

Problem (4) solved for S is feasible, then Problem (4) is feasible for every batch
Si. Conversely, let μ∗

1,i and r∗
i be the optimizers of Problem (4) solved for Si for

each i. Then, μ̃1 = 1/B
∑B

i=1 μ∗
1,i gives a feasible solution with 0 ≤ r̃ ≤ mini(r∗

i)
for Problem (4) for S.

Proof can be found in [10]. This proposition depends on class definitions,
satisfaction rules posed in the problem setup, and formula template. Although we
are losing optimality, we can still recover feasible STL formulas that are satisfied
by class 0 and violated by class 1 signals. We use Proposition 2 for soft margin
problem as well. Soft margin problem is not a feasibility problem, in fact every
solution is feasible in that formulation. By dividing the dataset into smaller parts,
we are finding optimal decision boundaries for each subproblem. Our intuition is
by taking the mean of optimal parameters, we approach minimum error in total.

5 Experiments

HighD dataset consists of vehicle trajectory data from different highway sections.
Since we are interested in longitudinal driving behavior, we discard vehicles that
change lanes. Speed and time headway signals have different orders of magni-
tudes, effecting robustness differently. To avoid this, we normalize the data for
training, and then denormalize to report the learned parameter values. Among
all vehicles in the dataset, 79.24% of them of them are cars, the rest are trucks.

Initially, we conduct a baseline experiment. We use one of the well-known
and interpretable classifiers, Support Vector Machines (SVM). The accuracy of
SVM over HigD dataset is 80.59%. It is slightly more than assuming that all
vehicles are cars. Therefore, it is clear that we need different approaches. Addi-
tional information for baseline experiment can be found in [10]. Next, we execute
four different MILP instances: (M1) Soft margin MILP approach (Problem (3))
with formula template (1) without any improvement, (M2) using Proposition 1,
(M3) Problem (3) with formula template (6) using only Proposition 1 and (M4)
Problem (3) with formula template (6) using Proposition 1 and Proposition 2.

Classification of Driving Behaviors Using STL Formulas 159

Known values of templates (1) and (6) are as follows: wε = 3, τ1 = 2, τ2 = 3 and
ε = 0.2. We randomly partitioned data into batches of four inputs. MILP method
does not require equal signal lengths but LoTuS needs equal signal lengths. In
the first part of the experiments we compare only MILP instances with full data
length. In the second part, for the sake of fair comparison with LoTuS, we trun-
cate the data. There are two comparison metrics: test error and execution time.
Training set is balanced with equal number of cars and trucks. However, the test
set is not balanced. For all MILP instances, we use an off-the-shelf optimization
solver, Gurobi. We set Gurobi’s solving time limit to one hour per parameter and
optimality gap to 5%. When time limit is reached, Gurobi returns its incumbent
solution if there exists any. The optimality of the incumbent solution is not guar-
anteed. In tables below, “∼” means that Gurobi cannot find a feasible solution
within the time limit. For tests, a Macbook Pro with 2 GHz Quad-Core Intel
Core i5 processors and 16 GB RAM is used.

Results for full length can be found in Table 1. The first column represents
the number of training inputs. Methods (M1)–(M4) represent methods that are
described in the beginning of this section. The minimum test error occurs when
formula template (6) with MILP instance (M4) is trained with 2000 inputs, and
ϕ̃ = �{�[0,2](w ≥ 3) =⇒ ♦[0,3](�(v ≤ 98.95) ∨ w < 3) ∧ �[0,2](w < 3) =⇒ ♦[0,3](�(w ≥ 2.047) ∨ w ≥ 3)}
is the STL formula. When shorter execution time is an important criterion,
formula template (6) trained with 1000 inputs gives comparable results. The
test error increases by 0.04% but execution times decreases almost 2.5 times.
Optimal parameters for this instance are μ1000 =

[
97.13 1.99

]
. Execution times

between MILP methods decrease significantly with each improvement.

Table 1. Comparison among MILP methods with full time length

Inputs (M1) (M2) (M3) (M4)

Error Time Error Time Error Time Error Time

% [s] % [s] % [s] % [s]

8 18.09 697 14.11 4011 14.29 11.71 13.18 3.057

20 25.07 7201 25.14 7201 12.87 119.7 13.19 4.991

40 ∼ ∼ ∼ ∼ 13.87 725.3 13.37 31.24

200 ∼ ∼ ∼ ∼ 15.02 7204 12.15 145.34

1000 ∼ ∼ ∼ ∼ 43.95 7214 11.35 675.6

2000 ∼ ∼ ∼ ∼ 79.83 7218 11.31 1507

Table 2 shows comparative results of each MILP instance with LoTuS on
truncated data. When data is truncated, we lose information during truncation,
and hence, test error increases. The minimum test error is obtained with LoTuS
when trained with 200 inputs. The obtained formula is

160 R. Karagulle et al.

ϕLoTuS2000 = ((�[1e−06,0.5]v < 90.4 ∧ (�[8.33,24]v < 87.5 ∨ (♦[8.33,24]v > 87.5∧
♦[15.3,24]w > 1.74))) ∨ (♦[1e−06,0.5]v > 90.4 ∧ (�[0.369,19.7]v < 97.8 ∧ ♦[3.73,20]w > 2.08))).

Table 2. Comparison among MILP meth-
ods and LoTuS with truncated data

Inputs (M3) (M4) LoTuS

Error Time Error Time Error Time

% [s] % [s] % [s]

8 16.88 3.011 17.37 1.894 17.00 7.098

20 16.76 10.80 21.86 5.607 16.22 5.319

40 13.17 152.5 16.89 10.20 15.15 9.749

200 14.03 7213 18.79 40.09 13.69 15.51

1000 30.06 7234 18.50 177.9 15.72 43.72

2000 79.83 7219 18.65 353.5 14.66 51.7

This formula is not as inter-
pretable as the formula templates
used in MILP. Besides, interpretabil-
ity decreases as the number of inputs
increases. E.g., the STL formula
that LoTuS finds for eight inputs
is �[8.52,11.3]v < 115 whereas, for 2000
inputs is ϕLoTuS2000 . We can say that
the test error is lower when using
MILP with full length.

6 Discussion and Conclusions

In this paper, we considered STL-based classification of driving behaviors. First,
we came up with an STL formula template and recast the classification problem
with a template as a MILP. We observed MILP-based solutions suffer from com-
putation complexity. We proposed two improvements to address the scalability
issue. This approach was compared with the toolbox LoTuS in terms of accuracy
and computation time. Both methods have some drawbacks. MILP approach
requires domain knowledge to come up with a template and it cannot search
for time parameters effectively. LoTuS has a set of primitives to search over
(limited to eventually always and always eventually) and it connects them with
disjunction or conjunction, not allowing further nesting. This restricts possible
formula types that can be obtained. In addition, LoTuS loses interpretability as
the training dataset grows. Further research is needed to find a better balance
between scalability, interpretability, and accuracy on real datasets. For scala-
bility, one can try satisfiability modulo convex optimization approaches, which
have been shown to improve practical performance compared to MILP on some
STL problems in recent years. For interpretability, using two different formula
templates, one per class, might increase flexibility.

Acknowledgements. Toyota Research Institute provided funds to support this work.

References

1. Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic
testing and verification for stochastic cyber-physical systems. In: 4th Annual IEEE
International Conference on Cyber Technology in Automation, Control and Intel-
ligent Systems, pp. 1–6. IEEE-CYBER 2014, October 2014. https://doi.org/10.
1109/CYBER.2014.6917426

https://doi.org/10.1109/CYBER.2014.6917426
https://doi.org/10.1109/CYBER.2014.6917426

Classification of Driving Behaviors Using STL Formulas 161

2. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

3. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

4. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Workshop on Knowledge Knowledge Discovery in Databases, vol. 398, pp.
359–370 (1994). http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-
03-031.pdf

5. Bombara, G., Belta, C.: Offline and online learning of signal temporal logic formu-
lae using decision trees. ACM Trans. Cyber-Phys. Syst. 5(3), 1–23 (2021). https://
doi.org/10.1145/3433994

6. Chou, G., Ozay, N., Berenson, D.: Explaining multi-stage tasks by learning tem-
poral logic formulas from suboptimal demonstrations. In: Proceedings of Robotics:
Science and Systems. Corvalis, Oregon, USA, July 2020. https://doi.org/10.15607/
RSS.2020.XVI.097

7. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic robots. Automatica 45(2), 343–352 (2009). https://doi.
org/10.1016/j.automatica.2008.08.008, https://linkinghub.elsevier.com/retrieve/
pii/S000510980800455X

8. Garg, K., Panagou, D.: Control-lyapunov and control-barrier functions based
quadratic program for spatio-temporal specifications. In: 2019 IEEE 58th Con-
ference on Decision and Control (CDC), pp. 1422–1429 (2019). https://doi.org/10.
1109/CDC40024.2019.9029666

9. Jones, A., Kong, Z., Belta, C.: Anomaly detection in cyber-physical systems: a
formal methods approach. In: Proceedings of the IEEE Conference on Decision
and Control 2015-February (February), pp. 848–853 (2014). https://doi.org/10.
1109/CDC.2014.7039487

10. Karagulle, R., Aréchiga, N., Decastro, J., Ozay, N.: Classification of driving behav-
iors using STL formulas: a comparative study (2022). https://doi.org/10.7302/
4872, https://deepblue.lib.umich.edu/handle/2027.42/173041

11. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM Fully Convolutional Net-
works for Time Series Classification. IEEE Access 6, 1662–1669 (2017). https://
doi.org/10.1109/ACCESS.2017.2779939

12. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal logic infer-
ence for classification and prediction from data. In: HSCC 2014 - Proceedings
of the 17th International Conference on Hybrid Systems: Computation and Con-
trol (Part of CPS Week), pp. 273–282 (2014). https://doi.org/10.1145/2562059.
2562146, http://dx.doi.org/10.1145/2562059.2562146

13. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highD dataset: a drone
dataset of naturalistic vehicle trajectories on German highways for validation of
highly automated driving systems. In: 2018 IEEE 21st International Conference on
Intelligent Transportation Systems (ITSC) (2018). https://doi.org/10.1109/ITSC.
2018.8569552

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3
http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf
https://doi.org/10.1145/3433994
https://doi.org/10.1145/3433994
https://doi.org/10.15607/RSS.2020.XVI.097
https://doi.org/10.15607/RSS.2020.XVI.097
https://doi.org/10.1016/j.automatica.2008.08.008
https://doi.org/10.1016/j.automatica.2008.08.008
https://linkinghub.elsevier.com/retrieve/pii/S000510980800455X
https://linkinghub.elsevier.com/retrieve/pii/S000510980800455X
https://doi.org/10.1109/CDC40024.2019.9029666
https://doi.org/10.1109/CDC40024.2019.9029666
https://doi.org/10.1109/CDC.2014.7039487
https://doi.org/10.1109/CDC.2014.7039487
https://doi.org/10.7302/4872
https://doi.org/10.7302/4872
https://deepblue.lib.umich.edu/handle/2027.42/173041
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/2562059.2562146
http://dx.doi.org/10.1145/2562059.2562146
https://doi.org/10.1109/ITSC.2018.8569552
https://doi.org/10.1109/ITSC.2018.8569552
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

162 R. Karagulle et al.

15. Neider, D., Gavran, I.: Learning linear temporal properties. In: Proceedings of the
18th Conference on Formal Methods in Computer-Aided Design, FMCAD 2018,
pp. 148–157, January 2019. https://doi.org/10.23919/FMCAD.2018.8603016

16. Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches.
IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016). https://doi.org/10.
1109/TCST.2015.2501351

17. Pnueli, A.: The temporal logic of programs. In: Proceedings - Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS, vol. 1977-October, pp. 46–57.
IEEE Computer Society (1977). https://doi.org/10.1109/sfcs.1977.32

18. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Model predictive control with signal temporal logic specifications. In:
53rd IEEE Conference on Decision and Control, pp. 81–87 (2014). https://doi.org/
10.1109/CDC.2014.7039363

19. Varnai, P., Dimarogonas, D.V.: On robustness metrics for learning STL tasks. In:
Proceedings of the American Control Conference 2020-July, pp. 5394–5399 (2020).
https://doi.org/10.23919/ACC45564.2020.9147692

https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1109/sfcs.1977.32
https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.1109/CDC.2014.7039363
https://doi.org/10.23919/ACC45564.2020.9147692

	Classification of Driving Behaviors Using STL Formulas: A Comparative Study
	1 Introduction
	2 Preliminaries
	3 Specifying Longitudinal Driving Behavior with STL
	4 Methods
	5 Experiments
	6 Discussion and Conclusions
	References

